Positive solution of critical Hardy-Sobolev elliptic systems with the boundary singularity
نویسندگان
چکیده
منابع مشابه
Hardy-Sobolev Critical Elliptic Equations with Boundary Singularities
Unlike the non-singular case s = 0, or the case when 0 belongs to the interior of a domain Ω in IR(n ≥ 3), we show that the value and the attainability of the best Hardy-Sobolev constant on a smooth domain Ω, μs(Ω) := inf {
متن کاملA Nonlinear Elliptic PDE with Two Sobolev-Hardy Critical Exponents
In this paper, we consider the following PDE involving two Sobolev-Hardy critical exponents,
متن کاملResults on Positive Solutions of Elliptic Equations with a Critical Hardy-sobolev Operator
‖u‖ L pN N−p (RN ) ≤ C(N, p)‖u‖D1,p(RN ). Thus we use D loc(R N ) to denote those functions u which satisfy, on all compact subsets K of R , u ∈ L 2N N−2 (K) and ∇u ∈ L2(K). It is the same asH1 loc(R ), another standard notation which denotes the set of functions u satisfying u,∇u ∈ L2(K) for all compact subsets K of R . A D loc(R N ) solution of (1.1) is in L∞loc. This can be proved by argumen...
متن کاملExistence of solution for a singular elliptic equation with critical Sobolev-Hardy exponents
Via the variational methods, we prove the existence of a nontrivial solution to a singular semilinear elliptic equation with critical Sobolev-Hardy exponent under certain conditions .
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Equations & Applications
سال: 2013
ISSN: 1847-120X
DOI: 10.7153/dea-05-16